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Poisson's ratio in materials is governed by the following aspects of the microstructure: the 
presence of rotational degrees of freedom, non-affine deformation kinematics, or anisotropic 
structure. Several structural models are examined. The non-affine kinematics are seen to be 
essential for the production of negative Poisson's ratios for isotropic materials containing 
central force linkages of positive stiffness. Non-central forces combined with pre-load can also 
give rise to a negative Poisson's ratio in isotropic materials. A chiral microstructure with non- 
central force interaction or non-affine deformation can also exhibit a negative Poisson's ratio. 
Toughness and damage resistance in these materials may be affected by the Poisson's ratio 
itself, as well as by generalized continuum aspects associated with the microstructure. 

1. In t roduct ion 
A new class of cellular materials was reported pre- 
viously [1]; these materials exhibit a negative 
Poisson's ratio. Such materials expand laterally when 
stretched and contract laterally when compressed. 
This unusual characteristic is achieved by forming the 
cells into a "re-entrant" shape which bulges inwards 
and which unfolds under tension resulting in a lateral 
expansion. These cellular solids can be made from a 
variety of polymers [1] or from metals [1, 2]. Negative 
Poisson's ratio materials are of interest because of 
their unusual nature, and because they deform in ways 
unexpected on the basis of experience with ordinary 
materials. For example, their shear modulus can sub- 
stantially exceed their bulk modulus, a situation op- 
posite that seen in rubbery materials. Moreover, many 
relationships for deformation in the theory of elas- 
ticity contain terms (1 - v z) with v as Poisson's ratio, 
so that for v approaching its lower limit - 1, en- 
hanced shear rigidity or high toughness can be achiev- 
ed [1], which can be of use in various applications [3]. 
The materials also exhibit unusual acoustic properties 
related analytically to the Poisson's ratio [4, 5], as well 
as acoustic properties experimentally determined and 
directly related to the re-entrant structure [6]. 

Negative Poisson's ratios can also arise in two- 
dimensional honeycombs with inverted cells [7], in 
rocks with microcracks [8, 9-l, in an anisotropic micro- 
cellular polymer, expanded polytetrafluoroethylene 
[10, 111, in anisotropic fibrous media in some direc- 
tions [12-141, in anisotropic pyrolytic carbon [151. 
While it had been reported that single-crystal pyrites 
had a negative Poisson's ratio, recent study indicates 
otherwise [161. Thin (anisotropic) magnetized ferro- 
magnetic films have been reported to exhibit a transient 
negative Poisson's ratio which disappears with ageing 
[171. Macroscopic structures of sliders, hinges, and 
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springs can also exhibit negative Poisson's ratio [18]. 
A variety of structural models can give rise to a 
negative Poisson's ratio [191, nevertheless negative 
Poisson's ratios are unusual. Indeed, in a large com- 
pilation of properties of polycrystalline materials [20], 
most have Poisson's ratio in the vicinity of 1/3 with 
exceptions such as beryllium which has a Poisson's 
ratio of about 0.1, and ammonium chloride which 
assumes a negative value over a narrow temperature 
range. 

It is the purpose of this article to identify the 
relevant microstructural features associated with 
negative Poisson's ratio materials and to present sev- 
eral structural models which exhibit these features in 
isolation. In the next section the role of structure in 
determining Poisson's ratio is explored, and in the 
section following that, the connection between struc- 
tures of interest and generalized continuum mechanics 
is examined. 

2. M icros t ruc ture  and Poisson's ratio 
2.1. Cauchy relations 
In the early development of the theory of elasticity, it 
was believed by some (such as Navier and Poisson) 
that isotropic materials were describable by only one 
elastic constant and that Poisson's ratio was 1/4 for all 
isotropic materials. The basis for this view (so-called 
uniconstant theory) was an atomic model in which the 
atoms as point particles in a centrosymmetric lattice 
[2l] interacted by central forces dependent upon dis- 
tance alone. Based on such a model, the tensorial 
elastic constants of an anisotropic solid become re- 
lated by "Cauchy relations"; for an isotropic medium, 
the Cauchy relations imply a Poisson's ratio of 1/4 for 
all materials described by the model. These arguments 
have been recapitulated by modern authors [21-231. 
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Figure 1 Hexagonal honeycomb structure of bendable ligaments. 

Experiments disclosed Poisson's ratios for most com- 
mon isotropic materials to be close to 1/3, resulting in 
the abandonment of uniconstant elasticity theory gov- 
erned by the Cauchy relations. The classical theory of 
elasticity now used incorporates two independent 
elastic constants for isotropic materials, and we realize 
that the above simple model does not have general 
applicability. 

Poisson's ratios differing from 1/4 can arise from 
deviations from the above assumptions, specifically 
(i) non-central forces between particles in the solid, 
(ii) forces which do not depend on distance alone, or 
(iii) anisotropy, including noncentrosymmetry. We ad- 
dress in this article the question of what kind of 
interaction results in a Poisson's ratio which is neg- 
ative, not just different from 1/4. To that end, we 
consider several microstructures with the aim of dis- 
tinguishing which kinds of interaction are most im- 
portant to achieve a negative Poisson's ratio. Most of 
these structures are two-dimensional and isotropic in 
plane in their classical elastic properties either by 
virtue of the choice of the elastic stiffness of the micro- 
elements or by symmetry. As for symmetry, materials 
which are structurally hexagonal, are transversely iso- 
tropic, i.e. isotropic in plane, within the framework of 
classical elasticity [24]. The range for Poisson's ratio, 
v, for isotropic materials is - 1 < v < 1/2 in three 
dimensions and - 1 < v < 1 in two dimensions. 

Under static conditions, noncentral forces must be 
accompanied by a moment, to satisfy the equilibrium 
equations. The kinematical variable conjugate to a 
moment is a rotation angle. As for forces which do not 
depend on distance but instead connect only selected 
pairs of particles, the corresponding kinematical de- 
formation is a non-affine one. This is in contrast to 
affine deformation in which the particles in the solid 
move in a way corresponding to a uniform strain plus 
a rotation in a continuum, i.e. uj = ajkx k in which u~ is 
the displacement, Xk is the particle position, ajk is a 
tensor describing the deformation, and repeated indi- 

ces are summed over. Affine deformation kinematics 
are necessary conditions for the Cauchy relations to 
be obtained [21]. 

2,2. Non-affine deformation 
A honeycomb composed of regular hexagonal cells 
(Fig. 1) has a Poisson's ratio of + 1 [7, 25]. The cell 
ribs undergo bending if the honeycomb is stretched or 
sheared. The deformation is not affine because some 
pairs of nodal points move apart during stretching 
while others do not. Indeed, a honeycomb without any 
bending can be made of elastic (spring) elements free 
to rotate at the joints. Because they would rotate 
without stretching if the honeycomb were under ten- 
sion, such a structure has a zero Young's modulus. To 
obtain an elastic honeycomb, additional soft elements 
could be inserted to supply the restoring force; the 
Poisson's ratio would be slightly less than 1. 

Re-entrant honeycomb cells such as those shown in 
Fig. 2 give rise to a negative Poisson's ratio [25, 26]. 
The ligaments undergo bending and the deformation 
is manifestly non-affine in that the cells unfold during 
stretching of the honeycomb. In particular, points A 
and B move further apart than expected from the 
global strain, while points C and D maintain their 
separation during stretching. Again, bending is not 
essential in that a similar effect can be achieved with 
stretchable (spring) elements only, which are free to 
pivot with no rotational constraint. The structure is 
orthotropic, however by appropriate choice of the rib 
widths and angles, an elastically isotropic honeycomb 
with a Poisson's ratio of - 1 can be obtained. For 
comparison, a structurally hexagonal re-entrant hon- 
eycomb structure is shown in Fig. 3; this is isotropic in 
plane by virtue of symmetry. In this case as well, the 
bendable ligaments can be replaced by rigid ones 
which are free to pivot, and the restoring force sup- 
plied by elastic elements (not shown). 
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Figure2 Re-entrant honeycomb with negative Poisson's ratio, 
made of bendable ligaments. A similar structure can be made with 
rigid ligaments if a spring is placed between points of type A and B, 

Figure3 Structurally hexagonal re-entrant honeycomb with neg- 
ative Poisson's ratio. Solid lines are bendable ribs. 

2.3. N o n - c e n t r a l  f o r ce s  
The above examples indicate it is possible to obtain 
large magnitudes of Poisson's ratio, including negative 
values, using central force interactions alone. These 
structures deform in a non-affine manner. We now 
consider the effect of non-central forces alone, with 
affine deformation. A two-dimensional structure of 
rigid rotatable nodes linked by elastic ligaments, ori- 
ginally examined in a study of generalized continuum 
mechanics [27-1, is of interest in this vein and is shown 
in Fig. 4. The sturcture is cubic, however it is possible 
to obtain elastic isotropy by choice of the stiffnesses of 
the elastic ligaments. Given the Lamb and Cosserat 
elastic constants provided in [27], we invoke isotropy 
(which results in a relationship between stiffnesses), set 
up the lattice without prestrain in any of the liga- 
ments, and calculate the engineering elastic constants 
in terms of the node size and the relative magnitude of 
the noncentral forces. Calculated Poisson's ratios are 
shown in Fig. 5. Observe that a rotatable node size of 
zero or a zero stiffness for the ligaments, k3, which are 
attached to the rotatable node periphery, results in a 
lattice governed by purely central forces; the Poisson's 
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Figure 4 Lattice of rigid rotatable nodes linked by elastic ligaments. 

0 

2 

t -  
o 

o 
Q. 

0.25' 

0.15. 

0.05 ' 

-0.05 I I l I 

0.0 0.1 0.2 0.3 0.4 0.5 
r i d  

Figure 5 Behaviour of structure shown in Fig. 4. Poisson's ratio 
versus rotatable node size, r, divided by lattice spacing, d, and spring 
stiffness ratio k~/ks,  which is a measure of the relative magnitude of 
the noncentral forces. Poisson's ratio is positive if all the ligament 
stiffnesses are positive. (~) k3/k 1 = l, (B) k3/k 1 = 2, ( A ) k3/k 1 = 5. 

( + ) k3/k a = 1/2. 

ratio is 1/4 as is the case in three dimensions. Introduc- 
tion of non-central forces reduces the Poisson's ratio; 
however, negative Poisson's ratios are not obtained 
unless one of the ligament stiffnesses becomes neg- 
ative, Such a ligament would be unstable if isolated, 
but the stability criterion for the entire lattice remains 
- 1  < v < 1. If the restriction of isotropy in this 

structure is relaxed, the minimum Poisson's ratio is 
still zero for non-negative ligament stiffness. The 
structure in Fig. 4 may be considered in relation to an 
earlier analytical study of granular materials [28]. 
Negative Poisson's ratios are theoretically possible in 
such granular systems if the stiffness for tangential 
deformation were to exceed that for normal deforma- 
tion. However for spherical granules with perfect slip, 
v = 1/4, while for contact without slip, 0 _< v < 0.11, 
consequently Poisson's ratio is positive for real 
granular materials. 

Non-central forces can also be introduced by 
endowing the lattice's connecting ligaments with 
bending and torsional rigidity. We consider such a 
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Figure 6 Poisson's ratio versus rotatable node size, r, divided by 
lattice spacing, d, for non-central force lattice shown in Fig. 4, with 
prestrain in the ligaments. Prestrain factor, f is the ratio of natural 
length of the vertical and horizontal ligaments to their length in the 
lattice, the lattice spacing, k 3/k 1 is a ratio of ligament stiffnesses. ( � 9  
k~/kl = 1 , f =  1; ([3) k3/k ~ = 1 / 2 , f =  1/2; (A) k3/k ~ = 1 / 4 , f =  1/2; 
( ~ )  k3/k a = 1/8, f =  1/8; ( 0 )  k3/k ~ = 8, f =  8; ( + ) .k3/k I = 1/2, 
f =  2; ( x ) k3/k 1 = l / 4 , f =  2. 

three-dimensional cubic lattice of points linked by 
extendable, bendable and twistable ribs [29]. Given 
arbitrary rib stiffnesses, the structure is orthotropic; 
however, we derive conditions on the ligament stiff- 
nesses to achieve isotropy. We find the Poisson's ratio 
to be 1/4 for zero rib-bend stiffness. The bend rigidity 
of straight ribs reduces the Poisson's ratio by a small 
amount  even if the ribs are thick. The lower bound on 
Poisson's ratio for this lattice is zero, and it is ap- 
proached if the bend stiffness of the ribs can be made 
larger than the extensional stiffness. 

For  the structure in Fig. 4, let us introduce a pre- 
strain in the vertical and horizontal ligaments, kl. The 
corresponding prestrain is then determined for the 
ligaments, k3, based on equilibrium considerations. 
Ligament stiffness is again kept positive. Poisson's 
ratio can be made either greater or less than 1/4 or can 
be made negative as shown in Fig. 6. End points on 
the curves in Figs 5 and 6 represent the allowable 
range for positive stiffness of all ligaments under the 
restriction of elastic isotropy. The model can also yield 
Poisson's ratios less than - 1 ;  the lattice is then 
unstable to small perturbations. Observe that the 
negative Poisson's ratios can be obtained only if both 
non-central forces and prestrain are present simultan- 
eously. 

2.4. N o n c e n t r o s y m m e t r y  
An unusual type of anisotropy is displayed by the 
hexagonal structure given in Fig. 7. The structure has 
a negative Poisson's ratio as can be appreciated by 
visualization or by making a model. The structure is 
not equivalent to its mirror image, so it lacks a centre 
of symmetry. Such structures are known as non- 
centrosymmetric, hemitropic, or chiral; they can be 
isotropic with respect to direction but by definition 
are not isotropic with respect to handedness. In con- 
trast to the centrosymmetric lattice in Fig. 6, no pre- 
strain is needed. The centres of the rigid nodes move in 
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an affine manner. However, if we represent the struc- 
ture as an assemblage of point particles, the "points" 
in the rigid nodes become connected by very stiff 
ligaments; in such a view the deformation becomes 
non-affine. A related "molecular" model was de- 
veloped [30] which incorporated rotational degrees of 
freedom and a nearest neighbour inverse nth power 
interaction. Negative Poisson's ratios arose in this 
model if the molecules were given a preferred orienta- 
tion or tilt. This is also a chiral structure, so despite the 
title given to reference [30] the structure is not iso- 
tropic. The tilting disc model in [11, 19] also appears 
to have a chiral asymmetry; however, it was not 
discussed by the authors. 

3. Role of generalized continuum 
mechanics 

The non-affine, rotational and noncentrosymmetric 
degrees of freedom considered above in a structural 
sense can also be viewed in the context of continuum 
mechanics. Continuum theories for elastic materials 
are available with different amounts of freedom; the 
uniconstant and classical elasticity theories discussed 
above are the simplest examples. Although the con- 
tinuum and structural views are distinct, we consider 
insight gained in one perspective to be transferable to 
the other. 

Cosserat elasticity [31], also known as micropolar 
elasticity [32], allows the points in the solid rotational 
freedom as well as translational freedom. Correspond- 
ingly there is a couple per unit area or couple stress as 
well as the usual stress which is a force per unit area. 
An isotropic Cosserat solid is described by six elastic 
constants. Conceptually, this continuum representa- 
tion corresponds to a microstructure containing rotat- 
able elements which suppor t  bending or torsional 
loads [29] or are connected by ligaments which can 
support such loads. It had been suggested that Cos- 
serat elasticity could be a mechanism for negative 
Poisson's ratios [33], however the range for Poisson's 
ratio in a Cosserat solid is the same as that for classical 
elasticity [32, 34]. Cosserat solids differ from classical 
ones in that stress concentration factors differ from 
classical predictions, as does the rigidity of bars in 
bending and torsion. Such effects depend on the char- 
acteristic lengths which are additional elastic con- 
stants in Cosserat theory; if these lengths vanish, 



classical elasticity is obtained as a special case. If the 
strains in the object vary over scales comparable to 
the characteristic lengths, then the stress will differ 
significantly from classical predictions. Experiments 
have disclosed several materials to behave as Cosserat 
solids, but the Poisson's ratios are not unusual (see, 
e.g. [35]). 

Chiral or noncentrosymmetric solids are those 
which are not invariant to an inversion of the co- 
ordinates. No mechanical effect of such asymmetry is 
predicted by classical elasticity. Cosserat elasticity 
allows the effects of chirality to be incorporated in a 
natural way; new effects are predicted such as the 
untwisting of a bar under tensile force, and size effects 
in Poisson's ratio [36]. 

Another generalized continuum theory is of elastic 
materials with microstructure [37], or micromorphic 
solids [38]. This theory allows the points in the solid 
to translate, rotate, and deform; the theory is therefore 
more general than classical elasticity or Cosserat 
elasticity, and an isotropic solid is described by 18 
elastic constants. The allowable range for Poisson's 
ratio is nevertheless identical to that for classical 
elastic solids [39]. Because the local micro-deforma- 
tion can differ from the macro-deformation, a micro- 
elastic solid of this type would experience non-aNne 
deformation in the structural view. 

Each structural mechanism considered here which 
gives rise to a negative Poisson's ratio is associated 
with a generalized continuum. Yet the generalized 
continuum theories allow the same range of Poisson's 
ratio as does classical elasticity. Not all solids which 
behave as generalized continua will have a negative 
Poisson's ratio; however, all negative Poisson's ratio 
materials will be describable as generalized continua. 
The characteristic lengths may be sufficiently small 
that the resulting nonclassical effects are too small to 
observe. Nevertheless the Poisson's ratio is a macro- 
scopic result of the microstructure; it is measurable no 
matter how small the structure is. For materials in 
which the structure size is sufficiently large, non- 
classical effects describable by generalized continuum 
mechanics can be substantial. It is important to con- 
sider which theory actually describes the material; for 
example Cosserat elasticity predicts a reduction of 
stress concentration factors for holes and cracks in 
comparison with classical values, while a different 
special case of microstructure elasticity predicts an 
increase [39, 40]. 

4. Discussion 
Several structural mechanisms have been found to 
give rise to a negative Poisson's ratio: non-affine 
deformation, non-central force interaction combined 
with prestrain, and chiral structure combined with 
either non-central force or non-aNne deformation. 
The materials originally reported [1] by the author 
have freedom to undergo both non-aNne deformation 
and bending of the ligaments (hence noncentral force). 
Other materials which have been reported to have a 
negative Poisson's ratio are mostly anisotropic and 
exhibit the effect only in some directions; the mech- 

anism of directional anisotropy has not been treated 
here. Rocks can be anisotropic; however, it is possible 
that the effects reported in rocks with microcracks 
[8, 9] are due to non-aNne deformation in the opening 
of the microcracks. Theoretical analyses of the effect of 
microcracks [41] predict that when there are enough 
cracks to reduce the Poisson's ratio to zero, Young's 
modulus also becomes zero, so that negative Poisson's 
ratios are not predicted by these theories, and theory 
and experiment fail to agree in this case. Rocks can 
exhibit complex behaviour: the Poisson's ratio of rock 
can depend very much on the stress history [42]. 
Polymer gels represent another interesting class of 
materials: such gels can exhibit negative Poisson's 
ratios over a narrow temperature range during phase 
transitions [43]. The mechanism for this has not been 
elucidated; however, we surmise that prestrain is in- 
volved. It remains to be determined by experiment 
which structural mechanisms are most important in 
generating the effects in real materials such as the 
above. 

Structural mechanisms are of interest in connection 
with the other material properties of materials with 
negative Poisson's ratios. For example, the non-aNne 
mechanism is associated with an unfolding of the unit 
cells. Such unfolding results in a change in the relation 
between stress and strain under large deformation: the 
stress-strain curves for re-entrant foam tend to be 
more linear than those of conventional foams. As for 
dynamical aspects, the convoluted unit cells can vi- 
brate and give rise to unusual acoustic behaviour [6] 
not explicitly associated with the Poisson's ratio. 
Moreover, it is possible that non-aNne deformation 
kinematics can be exploited to make new materials 
with unusual and useful acoustic behaviour. As for 
density, the materials originally reported [1] were 
polymer foams of relatively low relative density (solid 
volume fraction) with cells of size 0.3-2.5 mm. The 
foam cells could, in principle, be arbitrarily small, 
down to molecular scale. The upper bound on the 
relative density of this type of material is not yet 
known; however, we have no doubt there is such a 
bound and that it is significantly less than unity. As for 
stiffness and strength, low density in cellular solids is 
associated with low stiffness, and although metal foam 
is much stiffer than polymer foam [1, 2], materials 
with negative Poisson's ratios with higher density 
would be of interest [44]. The possibility of making 
high-density "solids" based on non-central forces with 
prestrain, or on chiral structures, is an intriguing one. 
As for toughness and damage resistance, the Poisson's 
ratio itself has bearing upon the stress concentration 
factors in certain three-dimensional crack geometries 
[1] such that negative values of large magnitude are 
advantageous. The generalized continuum aspects of 
these materials also affect stress concentration factors. 
Consequently, the toughness and damage resistance of 
these materials is expected to depend on the deforma- 
tion mechanisms described above and upon the cell 
size. Experiments are required to elucidate the 
connection. 

Structural mechanisms are also of interest in 
connection with the fabrication of materials with 
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negative Poisson's ratios. It is now known that mater- 
ials can be made which undergo non-affine deforma- 
tion and rib bending [-1, 2]. We have also made 
honeycombs based on the structures shown in Figs 2 
and 7. However, many of the models which have been 
reported for materials with negative Poisson's ratios 
tend not to lend themselves to the making of materials. 
As for the present non-central force model with pre- 
strain, it is possible that such prestrain could be 
introduced by selective crystallization and cooling. It 
remains to be seen whether materials with negative 
Poisson's ratios can be made in a controlled way 
based on the alternative models. 

5. Conclusions 
1. Negative Poisson's ratios can be obtained by a 

non-affine deformation geometry alone. 
2. Negative Poisson's ratios can result from a com- 

bination of non-central forces and prestrain. 
3. Negative Poisson's ratios can result from a chiral 

structure with rotational degrees of freedom combined 
with non-central force or non-affine deformation. 
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